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e Flesma fheath in g Maeretized Plasma
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I, INTRODUGTION

In this investigation we wish to determire the properties of the sheath
formed ebout vehicles moviag through the jonosphere. In particular, we wish
to determine the particle density and potential distributions through the
sheath, A theoretical derivailon of the dependence of the sheath thickness
on the medivm peramebers has not been given, sc that we would alsc like to
obta’n some insight conceroing this question from ths analysis.

It might be thought that the snswers to these guestions could be obtained
from a generalization of past work reporied in the literature, Tt turns cuf,
bowever, that the formulstion ueed by those authors is not adeguate to
properiy handie the present problem. For example, ths theory of the plasma
sheath which exists in a gas dischsrgs was developed by Tonks and Langmuir in

929 i1

£

[
[ —

for warinus geometries. We cannok, however, simply generslize their
method to the case of a moving body in the presence of s magnetic field in
order to hepdle the presant problem. This is due %o the fact that many
assumptions were made in their work which, although srs sufficiently geod for
spplications to gas discharges, are not tersble for the present problem. By
a similar argument, it is not possible to use the Boitamaon {2] or Fokker-
Planck [ 2] transport equetions in the present investigetlorn for the reason
that the derivaiion of these eguations is not sufficlentily gemeral for our
purposes. The derivation of the Bolismann sguatior completely neglects the
corralations betueen the peviticles in the plasma. This does not give a good
deseviption of s sheath because the lerge potential gradient makes such

correlaticne important. Similarly, in the derivation of the Fokker-Planck




equation one sssvmes thatv the spatiel gradient sceles of the distribution
functiouns are sufficientiy lerge so that the spatial variation of the
collision terms may be neglected. This assumption is not velid in the
present investigation. In addition, the Fokker-Plenck equation assumes
that the collision process is Markovien. This assumption has been shown to
be false for the case of an ionized gas by Tchen [4].

Watson [5] derived the Fokker~Planck sguation including some space-
dependence in the colilision terms. His procedure hes, however, been criti-
cized by Ichikswa [6] on the basis that his approach is semi-phencmenclogical
in thet it depends upon a speciasl model for the determination of the fluctus-
tion force.

A method of formulating the shesth problem so as to include these space-
dependent sffects is inherent in Bogoliiubov‘s method in stetistical physics
[7]. Tolmachev [8], Temko [9], and Tchen [4] used this method to derive the
Fokker-Planck equation for a plasme. These authors neglected spece~dspendert
effects, although Tchen investigated the non-Markovian bebavior of the plasmsa,
&s we remarked abova. Subseguently, Ichikawa [6] used a variant of Bogoliu-
bov's method, introduced by Kadomtsev [10], tc derive a Folker-Planck equsiion
which contained spatial dependent effects in the collision terms. Ichikawa
emphasized the importance of the consideration of space-dependent terms in the
equations describing ths density fluctuations of a plssma {plesma cscillations),

vhich had been neglected by previous auihors.

IT. DERIVATTION OF TiE EQUATYOHNS

We shall generalize the methed uscd by Kadomtsev [10] and Ichikawa [O]

to the casae of e non-neutral two-component plasms in the presence of & static




magnetic field. Since the eguations turn ocut to be so cowplicated, it will
be better, for a firat calculation, to neglect the vehicle motion.

First we coasider a configuration-velocity space in which the coordinate
axes are determined by the positions and veloclties of all the particles at
a given time t. If the system contains N, electrons and N, ions, then the
configuration-velocity space has 6(N; + N,) dimensions. Ve now define in
this space the wicroscopic densities of the electroms and ions,
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The indicated summations are over all electrons and ions respectively.
The quentities defirved by (1) ard {(2) satisfy Liouville's theorem which

states that the followlng relations hold:
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where G, and G; are 31e nicroccopic forces per vnit mass which sct on the
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elacirons end lons. respestively. We ignore the megnetic effects generstsd



by the motion of the cherged periticles, which is lezitimate since the
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particles ere noan-relativistic, and write:

Com—e[En+ YV H] (6)
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whers d iz the static extermal magnetic field and Z, is the microscopic
e : Pats

electric field acting on the particles. The microscopic field is given by:
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Using (6);, (7), and (8) 3in (4) and (5) we have:
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It should oe noted that, in performing the integrations in {9) and {10), the

peint x = x' iz to be omitted. This drops out the self-fields of the electrons
A -

and ions.

He now recsll that the F's are microscopic densities in the configuraivion-~

velocity space. Therefore, {3} and {i0) are not soluvle. Feilowing the

usual statistical mechanicel treatment we shall average over the initisl siates

of the system. We define:
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where the brackets denote the statisticel average. The procedure will now

be to asverage equations (9) and (10) in the sense discussed above. To carry

this out we will need expressicas for the average of a product of two micro-

scopic densities. A vepresentative of this type of guentity is [10]s

. ) \ e ~ /\i"‘s ~— S o 1\‘-
{RAR @) y=8-20F0) + L. aw

oA ) 2 ~ Ve fa o~ . (A
wnersa $f€e is c¢allied a nirary distriomution function. Actually, the first
term of {14) will not contribute to the sverages of () and {10) beceuse the
self-fields of the particles must be discarded. Averaging (9} and (10); we




finds
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The inequality o> ,4'/3 LZ KTy where n 1s an average density of electrons or
ions, end T is an appropriate electron or ion temperature, 1s satisfied in

the present problem. Under these conditicns we may write:

T £ f e ’) {17}
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where the binary correlation function, £ , is a small quantity. This point

has been discussed in more deteil by Kadomtsev [10]. Using egn. (17) and its

variations, {15) and {16} now become:
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The next to last terms in {18} and (19) do not appear in the sorresponding
equations of Kadomtsev. This is because he assumes 8 neutrel plasma, although
this is not explicitly stated. We cannot drop these terms, kowever, because
the sheath is not a neutral region. On the other hand, although the q?gs are
small, we cannot completely neglect them because they are important for large
and smelil values ofglg —‘gile This is related to the problem of the diver-
gence of Coulomb integrals. Wu and Rosenberg, howsver, have argued [11]
that, in fact, there is no "divergence difficulty® if the matter is handied
in the proper fashion.

| Thus, the next step is to derive equations for the binary correlation
functions . The technique is to muitiply (9) or {10) by an F, then multiply
the unused equation (either (9) or (10)) by an F (either the same or different
fror the first one), then add the two resuliting equetions, and then perform
the statistical average on this egqueiion. It is now found that the first tsrm
of {14) contributes to the averaged equestion. In addition, ve must have s
method of evaluating the statistical aversge of a product of three microscopic

densities. An exemple of such au sverage is [6]:
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Following the samre ergument that led to (17) we may write the ternary
distribution functions in the form [6]:
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Now, Bogoliubov [7] and Tchen [4] have shown that the ternary correlation
function, ¥, mey be neglected when the inequality given under eqn. (16} holds.
There is one more point to talk sbout before writing down the equations for
the binary correlation functions. This is that we may set @ ei = @ie 1n (18)
ahd (19). The statement is obvious on physical grounds. Mathematicelly, it
fbllows from the faect that the exact, miercscopic densities must be symmetric
functions of their arguments. Compare the discussion by Bogoliubov [7].

Now, following the procedure described above meking use of (14), {17),
‘ fEO), (21) and their variatidns we find the following three equations for the

binary correlsiticn functlions:
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Although the threz equatlons (22)~(2,) form s complete set when combined
with {18) end {19), we now write doun the gquation for @i {even though

?919 = @ g1)o We do this becsuse the properties of the particles - i.e.,
distribution functions, masses - appear in a different way in the two
equavions. Even though the two functions are the same, the equations deter-
mining them are mot., It is difficult at this statz of the anslysis, par-
ticvlarly since the squations are so complicated, to kacw the propsr
combination of eguations to use so as fo minimize the labor involved in
solving them. It may prove convenient later ocn to use a combination of egns.

(24) and (25) instead of either cne ssperately. We have:
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The undefined quantities which appear inm egns. {22)}-{25) are listed below.

A (£,2") 2 G [§<—£~£”) .+ fe(%)afecﬁ")}

] ;L 7 /f __[
T N(ﬁf)-’ﬁﬁé(fi"ﬁ}J: ,:(L(
e /'/ _
A’ . .
(20!
.._.__L 8 "y a’gn:_.s) ! - - N _.‘,(. (Q’!"}
Fo Te (L) : /N M (?’,) - /rjk{{t)’:’(vzﬁiﬂf)(’l;hd? T . S0
A 7 . - I P A
> X He S ok
? Hi }/ _ AR Ve
- L M) 2, S ()
/71< 91/ i
A~
/’Q“) ’
_ LSy Pl e (1Y)
7 ~ — i -
/",Q ;;\ {/ ..
o

12



A(ea)= - ";v” 6B ENEIEENES
+ 6 [$Ca -2, (8) + ) (2]

+% /,14(5)'5;[5@%"){ (i}fr;,;ﬂ’ff"pjiff) )

5 MO [l ()] 45 £ (2L

.
A, (e,27)= & [5a-£)% ()4 . o 5]
Lo / n, 2 (
— 7 T < X" ST ACORERC]
/ P 2 -
RN Car O] (28)
[ ) DS (2) ( DL (A"
- 7}—1" f/«, ('{,L / e ' [\/i K) 71'_/ ’j;zc—rl)f‘/* ~ ! N
N =Y% o T o A

D £ ()
( Y Qz/ﬁ ~ / n \
+ o ,(ja (L)— % (,5)7, ”j\“;‘“ - SR
& -~

13




~ [ ”,D‘ n
T @) M) - AN )2 [s2 - S )

o ...i—- t’\ Oi (\J-”/) , 1\ | j/ . !9§‘Q (_’(\l”) P
Mo £ (_‘f"‘ *‘—‘f""b’/"',,—'— '/\7 j:l/ .—/’/{e [J,{.\Q)’jsz(,\\)/ > i /:

where:

C Cxx) = —_— (30)

M%) = HE (o X) 5, () - el o

" W —
Ct) = ,2"-.+V,2+V,,27’,VXW{:%’VXWQ'%,' (32)
_ - e d E ~~ P — % o
, 2‘2- A ,1( 2’\: ~ 9/\‘/ 22\-
/
& ::,?} + Ve %~f I/(,/Q‘.N+o(t/xwev% ~+ A V’/xu)ef?/ﬁw”
— Vs - ~— ~~
P >z Q/V 2‘,1( b 3
~ , . o~ .2 "
P v, 2 v 2 - ¥ Awe’:‘;%%z Yﬁff";-lff,j rasd
(/_} = j;.-:t ~ X o~ 93(‘” ~ A 2/&’ {24)

14



For completeness we now reurite {18) and {19) in & more compact form:
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I1I. PROPCSED METHOD OF SOLUTION

Bquations {22)-{25) ané {36), (37} have the properties of being liresr
in %the 17 8 but nvonlinesr in tne:§: . e have in mind, at present, two

general schemes for solving these squations.

)

A} Bince the zguetions are linear ia the correlsticns, we could selve for

o~
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by the use of traunsform methods. This would leave



a set of tuwo coupled non-linear integral equations from which:Fg and.;fz
would be dstermined. In order to simplify matiers in the first calculation
we limit consideration to s plane geomeiry. Let us consider an infinite
plane situated at x = O, and let the external medium be the half-space x > C.
The half-space x < 0 corresponds to the interior of the vehicle. This model
would be good at distances small compared to the curvature of the vehicle
surface, snd i1s therefors best for large bodies. Thug, thege caleulstions
will give results which reprssent the opposite extremes to those ususlly
repcried in the literature, which are valid for bodies small compared to the
Debye length. For rsviews of this work we refer to Chopra [12] and Zachary
[{13]. Generalizstions to more complicated gecmetries will be considered
after some experience in solving the equations has besn obtained. The most
interesting situation occurs when the msgnetic field is parallel to the
plane, i.e., the magnetic field vector lies in the yz -plene. In this case
the singlet disﬁributions;fé and;fé ¢o rot depend on ¥ or z , which will
simplify the equations. To further simplify the situation we shall nsglect
the time dependenice of the quantities of loterest. These terms would be of
importance in the considerztion of cscillatory phercmena ian the sheath {plaama
oscillations, ete.) and alse in the comsideration of the effect of radic
freguency rediaticn on the sheath properties. We defer these considerations
until a later date.

Using the simplifications discussed above, equations {22)-{25) and [36),
{27) can be written in & somewhat simpler form than was done esriier. However,
the major simplificaticn is, st this stage of the znalysis, somewhatl implicii.
Thet is, since the only aspace coordinats involved is x, the equations found

for ; o and fiv by elimination of the iﬂ ‘g, Wwill be one-dimensionazl. This
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will permit e simpler treatment then would ctherwise be possible. Therefors,

since & compact vector motation was used, the simplifications discussed above
will not be evident at the present stage of the analysis. For this reason

it is not of much value to write down the new equatiorns.

There ars many types of integrél transforms which could be used %o
solve for theq??so We choose to use Fourier transforms on the velocity space,
and oitrer Hankel or Xellin twausforms on the x-coordinate.

Cnce the ncnlinear sguations for j?e aﬁdjffi sre obtained, the plam is
to solve them by the use of a veristional method, This method will involve
the use of a *trigl funetion for %he%:’so We actvally do rot reqgulre knowledge

- .
of:ﬁcé andijga, but only certain integrals involving these quantities will
be rneeded. For example, the particle density distributlons are given by
integrals of the{;?s over velocity space. The scalsr potential is given by,

}
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subject to the beundary condition thah @ is consgtant at x = 0 and venishes

d

Il

as ¥x->%, <;’/‘ (=)

varies through the sheath, not over the vehlele suwrfacae. He

14
would hope %o ccmpare<?{0} with experimertal measursments of the vehicle

potential., Since thejffs will be integrated over the veleocity space to givs
the quantities of inZerest, it will be a good approximsticn to iske a modifi

Gaussian for the velorilty depemdence, which will also allow the velocity in-

o

tegrations to be easlily performed. Tn addition, the trial functions for the

Fad

:éras will comnbain functions of x whici must be determined by use of the

e,

g

[RE

variational procedure. Thus. we will Then rsve 2 simpler situaticn of rav

EXN -

a set of cne-Gimensionel eguationz, even though they will in general still



be ronlinear. Howvever, thls does not copstitute & serious problem in the
variational methods.
The singlet distributions, fe and 7(:1, must satisfy further restrictions.
Firstly, since we will deal with & time-independent situation, the net
current in the sheath must be comserved. Thls requires that,
Vo — (
Vv Z = O 41)

where:

s
o

# / / Il
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d ~) s~ =T '

P
The condition {41} will be included in the variational procedure by the use
of Lagrange multipliers.

One final point is that the singlet distributions must satisfy certain

boundary conditioms. Clearly ﬁ:e and SFi must remein finite as x>, Also,

some conditions must be imposed at x = 0. For example, we may take

”

_—\C = A - ~’[’t = - ’
_ (X‘o) - /U—(X’o) = O (42)

=

(B} Instead of sciving for the correlstion functiona (?’fs) first, and then
eliminating them from the remainder of the eguatiozs it may turn out to be
better to apply the variastional methed to the equations right at the start.
The advantage of this procedure would be that the velocity dependence of the
equations is eliminated at the beginning. It is too soon to decide between
the msthods.

“r conciusion, we may say that & caleulaticnal scheme which shows signs
of being successful is emerging, st least for a simple geouetry. This should

paeve the way towards the itreatment of more compiiceved giltuaticns.

)
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